
Engineer To Engineer Note EE-202

a

Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

Using the Expert Linker for Multiprocessor LDFs
Contributed by Maikel Kokaly-Bannourah July 17, 2003

Introduction
This EE-Note explains the use of the Expert
Linker (EL) for creating Linker Description Files
(LDFs) for Multiprocessor (MP) systems.

Although, this concept applies to VisualDSP++
for all SHARC Processor families (ADSP-
21x6x and ADSP-TSxxx), the examples shown
throughout this document are for the ADSP-
TS101S TigerSHARC Processor.

The example code used for this note is based on
EE-167 “Introduction to TigerSHARC
Multiprocessor Systems Using VisualDSP++”
and it was written using VisualDSP++ 3.0
Service Pack 1 for TigerSHARC (please note
that “expertlinker_fixes.zip” must be installed
prior to going through this note - see
README.txt for more details).

Expert Linker Overview
The Expert Linker is a graphical tool that
simplifies complex tasks such as memory map
manipulation, code and data placement, overlay
and shared memory creation, and C stack/heap
usage. This tool provides a visualization
capability enabling new users to take immediate
advantage of the powerful LDF format flexibility
in a very user-friendly way.

This note assumes a basic understanding of the
Linker Description File as well as the way the
linker utility (linker.exe) operates. For detailed
information on this utility as well as the LDF,
please use the VisualDSP++ on-line help. Also,

refer to the VisualDSP++ 3.0 Linker and
Utility Manual for TigerSHARC, EE-69
“Understanding and Using Linker Description
Files (LDFs)” (for a general description on the
LDF), and EE-167 (for an explanation on the
different multiprocessor linker commands).

Expert Linker LDF Wizard
The Expert Linker (EL) wizard is used to
generate an LDF for new VisualDSP++ projects.
However, the Expert Linker can also be used to
view or modify an already existing LDF.

Open the project (MP TS101.dpj) attached to this
note. The source code comes with no LDF,
which will be created, step-by-step, through this
note.

Please note that an MPTS101_orig_ldf.txt
containing an already created LDF file is
available as a reference.

Let’s now get started with the creation of the
LDF. First of all, to invoke the Expert Linker
wizard choose from the pull-down menu as
shown in Figure 1.

Figure 1 Invoking the Expert Linker Wizard

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

 a

Using the Expert Linker for Multiprocessor LDFs (EE-202) Page 2 of 11

Figure 2

Figure 2 Expert Linker Wizard Start-up Window

 shows the start up window when first
invoking the EL wizard.

Click Next.

Project type

At this stage, the user needs to specify the project
information corresponding to the project type for
which the LDF is being generated. As shown in

, the type can be C, C++, Assembly or
VDK.
Figure 3

Figure 3 Project Type

Click Next.

Selecting an MP LDF

By default, the LDF is for single processors.
Choose the Multiprocessor box for MP support
(Figure 4).

Note that in case a mix of assembly and C files,
or any other combination, is used, the most
abstract programming language should be
selected. For example, for a project with C and
assembly files, a C LDF should be selected.
Similarly, for a C++ and C project the C++ LDF
should be selected.

In this particular example, the files source code
is assembly, and therefore the selected project
type is also Assembly.

Figure 4 Multiprocessor LDF selection

The LDF name is specified here as well, which
by default uses the same as the project name. Determining the Number of Processors and MP

Memory Offset Values

Right click on the Processor Properties box to
add the desired number of processors to be
included in the LDF. For this particular example,
a dual processor system is selected. Therefore, a

Note that if an LDF file already exists, the user
will be prompted whether to replace the existing
file.

 a

Using the Expert Linker for Multiprocessor LDFs (EE-202) Page 3 of 11

second processor (P1) needs to be added to the
list.

Figure 6 Executables to Link Against

As it would be done in the LDF source file with
the LINK_AGAINST command, the EL allows
the user to resolve symbols declared within MP
space. This is done by simply specifying for each
processor to which DSP to link against.

Figure 5 Processors and MMS Offset

As it can be seen in the Processor window
(Figure 5), the multiprocessor memory space
(MMS) offset value is automatically added in by
the EL. This helps the user to avoid having to
worry about specific MP addresses and memory
offsets, making the use of MP commands much
easier. This is an automatic replacement for the
linker command MPMEMORY used in the LDF
source file.

In this particular example, symbols referenced in
P0 but declared in P1 can be resolved by the
linker by adding P1.dxe to the Executable to Link
Against box (Figure 6) for P0. Similarly, P0.dxe
is added in for P1. In cases where more than one
.dxe is added to this box, commas or spaces can
be used as separators.

Now that an MP LDF has been selected, the
processors have been added to the list, and the
relevant linker commands have been specified,
the LDF is ready for completion.

Linking Processors Executables

In the Output File box, the user can specify the
name of the executable file for each processor in
the system. By default, the EL selects the same
name for the .dxe file as for the processor name. Click Next.

Note that in the case where shared external
memory is used (shared.sm), this would also
need to be added to the link against command
box. This is automatically handled by the EL and
will be explained later on.

 In this case, P0.dxe and P1.dxe are selected as
the names for the DSP executable files and are
placed in the Debug folder within the project
folder.

 a

Using the Expert Linker for Multiprocessor LDFs (EE-202) Page 4 of 11

MP LDF Wizard Completion

Figure 7 Expert Linker Wizard Completion

Click Finish.

Expert Linker Window
After completion of the Expert Linker wizard,
the LDF graphical interface will open up (

).
Figure

8

Figure 8 Expert Linker Window

The EL window has two panes: Input sections
(displays a tree of all the projects input sections)

and Memory Map (tree or graphical
representation of each memory map).

For more details on the Expert Linker window
and display options, please use the on-line help
in VisualDSP++.

Adding Shared Memory Segments
In many DSP applications where large amounts
of memory for multiprocessing tasks and sharing
of data are required, an external resource in the
form of shared memory may be desired.

To add a shared memory section to the LDF
using the EL, the following steps should be
followed:

1. Right click on the Memory Map pane

2. Select New/Shared Memory

3. Specify a name for the shared memory
segment (.SM)

4. Select the DSPs that have access to this
shared memory segment.

Click OK.

As shown in Figure 9, a new shared memory
segment, visible to Processors P0 and P1, has
been successfully added to the system.

Note that variables declared in the shared
memory segment will be accessed by both
processors in the system. In order for the linker
to be able to correctly resolve these variables, the
link against command should be used once again
(see Linking Processors Executables).

The EL automatically does this, and therefore the
user does not need to perform any additional
modifications to the LDF.

 a

Using the Expert Linker for Multiprocessor LDFs (EE-202) Page 5 of 11

Figure 9 Shared Memory Segment

The user can confirm that the EL has correctly
added the .sm file to the link against command
line by simply viewing the Memory Map pane
properties:

Figure 10 Adding “shared.sm” to the “Executables to
link against” box.

1. Right click on the Memory Map pane

2. Select View Global Properties

3. Click on the Processor tab

Shared.sm should now be contained in the
Executables to Link Against box for each
processor as illustrated in Figure 10.

 a
Detection of Non-Linked input
sections
By default, the LDF contains data1, data2 and
program input sections for each processor as
well as for the shared memory segment.

In the scenario where the user declares in his
code an input section different to any of the three
mentioned above, the EL will detect it and it will
mark it with a red cross as a “non-linked” input
section (Figure 11).

Figure 11 Detection of non-linked input sections

Figure 11

An example of “non-linked” section is provided
in the source code (ext_data). Press the Rebuild
All button and update the contents of the EL
window (double click on the LDF file in the
project window).

 shows how the linker has detected this
“non-linked” input section. In this case, it
corresponds to a variable declared in external
SDRAM memory, which belongs to the shared
memory segment.

Note that at this stage, the linker will generate
some errors when building the project. This is

due to the fact that the output sections have not
been properly configured (object files not linked
yet).

Linking Object Files
Now that both processors and the shared memory
segments have been properly configured, and the
EL has detected all input sections, the next step
is to link the object files from these different
input sections to their corresponding memory
sections.

Using the Expert Linker for Multiprocessor LDFs (EE-202) Page 6 of 11

 a
First of all, sort the left pane of the Expert Linker
window by LDF Macros instead of Input
Sections (default setting). This can be done by
right clicking on the left pane and selecting Sort
by/LDF Macros.

Then, right click on the LDF Macro window and
add a new macro for P0 (Add/LDF Macro). For
example, $OBJECTS_P0. Repeat the same step
for P1 and shared.sm (Figure 12).

Figure 12 Creating LDF Macros

The next step is to add the object files (.doj) that
correspond to each processor as well as to the
shared memory segment. This is done by right
clicking on each recently created LDF Macro
and then selecting Add/Object/Library File.

 shows the objects files added to each
LDF Macro.
Figure 13

Figure 13 Adding Object Files

The use of LDF macros becomes extremely
useful in systems where there is more than one

.doj file per processor or shared memory
segment, in which case the same step previously
explained should be followed for each .doj file.

As shown in Figure 14, the LDF macro
$COMMAND_LINE_OBJECTS must be deleted
from the $OBJECTS macro to avoid duplicate of
object files during the linking process.

The $COMMAND_LINE_OBJECTS macro
contains the .doj files that correspond to every
source file used in the project (in this case
ID0.doj, ID1.doj and data.doj). If this macro is
left in, the linker will automatically map the .doj
files for both processors into each processor's
memory map, i.e. M0Code/code will contain
ID0.doj(program) and ID1.doj(program). This is
obviously wrong, since there is no need to map
any of ID1.doj code into processor P0.

Therefore, right click on the
$COMMAND_LINE_OBJECTS macro and select
Remove.

Figure 14 Deleting the

$COMMAND_LINE_OBJECTS LDF Macro

The next step is to map the new macros into
memory. This is done by placing each macro into
its corresponding memory section.

Before this can be done, the left pane needs to be
sorted by Input Sections instead of LDF macros.

Using the Expert Linker for Multiprocessor LDFs (EE-202) Page 7 of 11

 a
Thus, right click on the left pane and select Sort
by/Input Sections.

Additionally, change in the right pane the
Memory Map View Mode from Graphical to
Tree mode. Right click on the Memory Map
window, select View Mode and then Memory
Map Tree.

Now select one of the processors by clicking on
the processor’s name tab. In this case P0 is
selected first. Then, place (drag and drop) the
recently created LDF macro, $OBJECTS_P0, in
its corresponding memory segment. These steps
are shown in Figure 15.

Figure 15 Linking Object Files Using LDF Macros

Repeat the same steps for processor P1
($OBJECTS_P1) and for the shared memory
segment, shared.sm (place $OBJECTS_SM in the
SDRAM section).

Press Rebuild All.

As it can be seen in Figure 16, the red crosses
denoting the “non-linked” sections have
disappeared, indicating that the input sections
have been properly mapped into memory.

Using the Expert Linker for Multiprocessor LDFs (EE-202) Page 8 of 11

 a

Using the Expert Linker for Multiprocessor LDFs (EE-202) Page 9 of 11

Figure 16 Expert Linker Multiprocessor LDF

Also, note that the LDF macros that were moved
from the Input Sections window (left pane) to
their corresponding sections in the Memory Map
window (right pane) have been automatically
replaced during linking process with the actual
object files (.doj) used by the linker.

Expert Linker Multiprocessor
LDF Source Code
The LDF is now complete! Figure 17 illustrates
the generated LDF in the Source Code View
mode.

As shown in Figure 17, the multiprocessor linker
commands, MPMEMORY, SHARED MEMORY

and LINK AGAINST, as well as the
corresponding LDF Macros, have been
successfully generated by the Expert Linker in a
way absolutely transparent to the user.

The complete project is now ready to be built.
Once again, perform a Rebuild All and safely
start debugging with the application code.

 a

Using the Expert Linker for Multiprocessor LDFs (EE-202) Page 10 of 11

Figure 17 Expert Linker Multiprocessor LDF Source code

 a

References
[1] ADSP-TS101 TigerSHARC Processor Hardware Reference.

First Edition, March 2003. Analog Devices, Inc.

[2] VisualDSP++ 3.0 Linker and Utility Manual for TigerSHARC.
Rev. 1.0, October 2002. Analog Devices, Inc.

[3] Understanding and Using Linker Description Files (LDFs) (EE-69).
August 1999. Analog Devices, Inc.

[4] Introduction to TigerSHARC Multiprocessor Systems Using VisualDSP++ (EE-167).
April 2003. Analog Devices, Inc.

Document History

Version Description

July 17th, 2003 by Maikel Kokaly-Bannourah Initial Release

Using the Expert Linker for Multiprocessor LDFs (EE-202) Page 11 of 11

